

Blue Gene/L Workshop

Reno, NV

October, 2003

TotalView on Blue Gene/L

John DelSignore
Chief Architect

Outline of Today's Talk

- **♦ About Etnus TotalView**
- **◆ Porting TotalView to BG/L**
- ◆ Scalability and Performance
- ◆ Do We Need a Paradigm Shift?
- Questions & Answers

About Etnus TotalView

- World's leader in UNIX/Linux debugging solutions
- Parallel Processing, SMP and Distributed Systems
 - Multi-process and multi-thread support
 - Distributed, clusters, MPI, pthreads, OpenMP
- Customers include
 - Major government research and academic labs worldwide
 - Software development companies
 - Computer hardware vendors
 - Companies in Finance, Entertainment, Telecommunications, Energy, Aerospace, Climate Modelling, Automotive
- TotalView has been continuously developed and extended for 17 years
- We're proud to be the ASCI debugger of choice

Platforms

Present

- ◆ IBM AIX Power (RS6000, SP)
- HP/Compaq Tru64 Alpha
- ◆ Intel Linux X86 and IA64
- ♦ SGI IRIX MIPS
- Sun Solaris SPARC

♦ Future

- AMD Linux X86_64
- ◆ HP HPUX IA64

◆ Past

- Compaq Linux Alpha
- ♦ HP HP-UX PA-RISC
- Many, many others
- ◆ Fujitsu, NEC, Cray, Hitachi
- ◆ Red Storm, Blue Gene/L

Languages

- **♦** C/C++
- ◆ Fortran 77/90/95
 - ◆ F90 types
 - Modules
 - By-descriptor arrays
- **♦ UPC**
- Mixed Languages
- Assembly
- ◆ Mixed Java/C/C++
 - with the CodeRoad JNI Bridge

Supports Leading Compilers

- ◆ IBM XL/VA
- **◆ GCC 3**
- SGI MIPS Pro
- **♦ Sun ONE Studio**
- ◆ Intel C/C++ for Linux
- ◆ Intel Fortran for Linux

- **◆ Intel KCC**
- ◆ Intel KAI Guide
- **◆ PGI 3**
- **◆ Lahey/Fujitsu**
- Apogee
- ♦ HP/Compaq C/C++/F90
- ◆ Compaq UPC 2.0

TotalView GUI & CLI

TotalView GUI & CLI (cont)

Porting TotalView to BG/L

- ◆ Etnus is porting TotalView to BG/L
- Working with IBM to
 - Iron out the details of how to do it
 - Collaborating on debugging interfaces
- Remainder of this talk will outline
 - General porting approach we plan to use
 - Outline of the functionality we plan to have
 - Scalability and performance ideas
- Details are subject to change
 - At participating dealers only, your mileage may vary, offer not valid in all states, some restrictions apply ©.

BG/L TotalView Debugger Software Stack

TotalView	tvdsvr	
ICCDP client TCP	ICCDP server	
Automatic	Milestone #26	
Process Acquisition?		CIOD agent
srun	CIOD Tree	MPI ranks
Linux	Linux	CNK
4-16 x Power4	2 x PPC 440	2 x PPC 440
Front End	I/O	Compute
1 X	N	64

Front-End Node (FEN)

TotalView

ICCDP client

TCP

Automatic Process Acquisition?

srun

Linux

4-16 x Power4

Front End

Requires a powerful FEN

- ◆ Server-class SMP (4-16 way)
- Power4, 1GHz+
- ◆ 4GB+ memory
- Runs Linux OS
- Hosts the TotalView GUI and CLI clients
- ◆ TV talks client-side ICCDP to NTV debugger servers over TCP/IP
- Automatic process acquisition TBD
 - May use existing approach (TV debugs mpirun)
 - May need to develop a new client/server approach (requires LLNL/IBM/Etnus collaboration)

I/O Nodes

- Reasonable horsepower for the TotalView Debugger Server (tvdsvr)
 - 700 MHz PPC 440
 - ◆ 512 MB memory
- Runs Linux OS
- ♦ Hosts the BG/L tvdsvr
- tvdsvr talks server-side ICCDP over TCP/IP to TV
- 1 server exerts trace-level control over
 64 compute nodes
- **◆** Communicates with CIOD via pipe
 - To implement low-level debugging protocol
 - CIOD debug messages sent to/from CIOD agent

Compute Nodes

◆ Hardware

- ◆ 2 x 700 MHz PPC 440
- Double Hummer FPU (1 per processor)
- ◆ 512 MB memory

Runs CNK OS

◆ No part of TotalView runs here

- So IBM knows better how this really works
- Debugging happens in CNK exception handlers ("CIOD agent" is my name)
 - ◆ Communicates with CIOD on Linux I/O node
 - Sends/receives debug messages over the tree
- TotalView will view each compute node as
 - ◆ A single process (one address space)
 - Having two threads (one thread per processor)

CIOD agent

MPI ranks

CNK

2 x PPC 440

Compute

BG/L TotalView Features

- ◆ TotalView version 6.4 or later (mainline)
- TotalView GUI and CLI
 - Breakpoints, single-step, etc.
- Documentation
 - Electronic form, HTML help
 - Blue Gene/L specific addenda
- **◆** Languages
 - ♦ C, C++, Fortran
 - Assembler
 - Mixed languages

- Compilers
 - ◆ GCC 3
 - ◆ IBM XL / Visual Age
- ♦ MPI
 - Automatic process pickup
 - Message queue display
- ◆ Double Hummer FPU
- Data watchpoints?
 - If supported by CNK
- STL types display?
 - vector<>, list<>, map<>

Unsupported Features

- ◆ No data Visualizer
- No OpenMP
- ◆ No SHMEM, PVM
- ◆ No pthreads
- No shared libraries
- ◆ No compiled expressions
 - ◆ Interpreted expressions only
- ◆ No checkpoint restart
- No core files

Scalability and Performance

- ◆ TotalView's History of Scaling
- ◆ Defense Mechanisms for Scaling
- Scalability and Performance Philosophy
- ◆ Plans for Scaling to BG/L
- ◆ Do We Need a Paradigm Shift?

TotalView's History of Scaling

- ◆ TotalView was designed to be a parallel debugger (BBN Butterfly)
- ◆ 10 years ago, scaled to about 100 processes comfortably
- ASCI Path Forward projects
 - Developed Subset Attach feature
 - Scalability was increased to
 - ◆ Handle about 1,000 processes comfortably
 - ◆ Handle about 2,000 processes less comfortably
 - But problems start at about 3,000 processes

Defense Mechanisms for Scaling

◆ Debug a smaller job

- ◆ Typically debugging 1 process!
- Debugging 4 to 32 processes is very common
- Some routinely debug 100 processes
- Rarely 1,000 processes or more

Developed Subset Attach feature

- Debug a subset of processes in a large parallel job
- On job launch or attach
- Fan out attach during a session
 - ◆ Based on MPI process communication state
 - ◆ Data values in a scalar array

Scalability and Performance Philosophy

Must scale in three dimensions

- Resource consumption: Do we fit within system limits?
- Runtime performance: Are we responsive to the user?
- Presentation of information: Can we present information in an easily digested format?

Must actively work on scalability and performance

- Machines and programs are getting bigger
- Feature additions tend to slow things down
- Continuously test and measure, using a hands-on approach, which requires access to the
 - End-user's machine resources
 - ◆ End-user's application
 - End-user's usage scenarios

Plans for Scaling to BG/L

- ◆ Special effort will be required for BG/L scale machines
- Performance and scalability approaches under consideration
 - Restructured finite-state machine
 - Push more computation into the tvdsvr
 - Restructure messaging: Async TV⇔tvdsvr, "psychic", aggregated, optimistic
 - Multi-threading TV and/or tvdsvr
- Haven't thought too hard about how to scale the GUI yet

Do We Need a Paradigm Shift?

- ◆ Above concerned with scaling TV, but I have a few questions for you ...
- ◆ Do users really want to debug 64,000 processes?
- ◆ What goes wrong at 64,000 vs. 1,000?
 - ◆ Correctness? Performance? Something else?
- Do we need additional facilities?
 - ◆ Lightweight "watchdog" debugger
 - High-scale lightweight event tracer
 - ◆ Hardware performance counters & tools

Questions and Answers

- ◆ www.etnus.com
- ◆ info@etnus.com